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Power Electronics Cooling
Critical Enabling Technology for Fuel Cell Vehicle and Stationary Applications
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Project Goal :

Develop a heat exchanger design to
efficiently remove heat from the power
module and reject it into the vehicles
coolant loop with uniform cooling,
minimum cost, volume and pressure drop.




Robust Optimization reusable workflow template
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Background: Recent DFV Applications

Petroleum Consumption, Technical Hurdles, Transfer to Industry




Robust Designs of B

Fuel Cell Components

-Thermal analysis
-Structural analysis
-Topology optimization

- High temperature stack

Behavioral Modeling for
Power Electronics Cooling

ANSYS

Design for Six-sigma
Techniques for
Battery Thermal
Management




Review of Literature and Conceptual Designs

2. "Cook-top” serpentine flow field

3. “Fish bone” fins

4. Carbon Foam
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5. Aluminum Extrusion with Expanded Metal
Turbulator




Review of Literature and Conceptual Designs

3. “Fish bone” fins

4. C Liquid Cooled, Intgrate-ih

A heat exchanger

o Low Cost
T, Compact
o Effective

g Durable



Problem Statement

Develop a workable methodology to find the optimal pin-fin
geometry that:

Minimizes dT

Where:

1mm < Pin_dia < 10 mm

1mm < Pin_h < S mm

1 < NX < 15 (integer)

2 < Ny < 50 (integer)

Subject to:

maxT < 125 °C

dP < 20000 Pa
(Lx-Nx*Pin_dia)/Nx > 0.5 mm (no interference in x)
(Ly-2*Ny*Pin_dia)/(2*Ny) > 0.5 mm (no interference in y)



Input Parameters and Assumptions

« Heat Exchanger Base and Pins - AlSiC
— Thermal conductivity (k = 150 W/mK)
— Density (p = 3000 kg/m3)
— Heat Capacity (C = 768 J/kg C)

« Coolant - Water
— Thermal conductivity (k = 0.66 W/mK)
— Density (p = 983 kg/m3)
— Heat Capacity (C = 3000 J/kg C)

« Boundary Conditions:
— Heat Flux (q =80 W/cm?)

— Coolant Flow Rate (u = 1.4 x 104 m3/s)
— Inlet Temperature: (Tin = 60 °C)
— Symmetry along the “y” plane (along flow path)

« Material behavior isotropic
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FEA Model — CFD Analysis of Pin Fin Design

o

It.

Elements 3648
Nodes 4387
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It...

Model (176 pins) -~
over 1 million elements
for accurate CFD

Complete




_CFD Analysis of Staggered vs. In-Line Flow




Heat Transfer Coefficient from CFD Analysis
Staggered vs. In-Line Flow
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Conjugate Solution of CFD and Heat Transfer

FLOW TRACE
3TEP=1

Thermal Analysis Using Film

- Coefficients Derived from CFD
ANSYS
CEC 20 2002
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Thermal FEA Model
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176 pin model: 82K elements
100K nodes




Thermal Analysis

with Classical Theoretical Determination of Film Coefficients (Kreith)

Reynold’s number for
flow around pin fins

Nusselt number
- laminar

- transitional

- turbulent
Nu = 0.022Re(l))'84 pr0-36

coefficient

Pressure
Drop




Parametric FEA Model
Rapid Analysis of Many Different Des

Iigns
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Parametric FEA Model
Rapid Analysis of Many Different Des

igns
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Parametric FEA Model

__Rapid Analysis of Many Different Designs




Parametric FEA Model

__Rapid Analysis of Many Different Designs




Parametric FEA Model

__Rapid Analysis of Many Different Designs




Parametric FEA Model

__Rapid Analysis of Many Different Designs
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Design Space Exploration (pin h, pin dia, spacing)

Maximum Temperature vs. Pressure Drop
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Design Space Exploration (pin h, pin dia, spacing)

Maximum Temperature vs. Pressure Drop
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Design Space Exploration (pin h, pin dia, spacing)

Temperature Differential vs. Pressure Drop
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Design Space Exploration (pin h, pin dia, spacing)
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Behavioral Modeling within the CAD Environment

« Attribute driven Parametric
modeling (dP, Tmax, dT)

« Automated optimization at the
design stage
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Very fast solutions and

* Requires closed form
solutions or link to other
analysis tool (CFD, FEA, etc.)




Summary and Conclusions

« Computational Fluid Dynamics
— Detailed model allows flexibility
— Computationally and time intensive solutions (hours)
— Excellent for flow visualization, validation, and limited investigations

« Thermal FEA with Heat Transfer Coefficients from CFD

— Allows for smaller CFD model (solution still may take hours)
— Thermal model yields solutions quickly (minutes)
— Requires CFD run for each new design configuration

* Thermal FEA with Theoretical Determination of h & dP:
- utions (mi Vi oo [inked with onfimizat -

— Requires closed form solution for h and dP

 Behavioral Modeling within the CAD Environment

— Very fast solutions (seconds)
— Excellent for optimization

— Requires a closed form solution, or link to another analysis tool (CFD,
thermal)



Summary and Conclusions

« Rapid optimization of pin fin geometry can be achieved
using parametric thermal FEA with theoretical
determination of heat transfer coefficients and pressure
drop

 Integrated, liquid-cooled pin-fin heat exchanger was
effective for achieving the target maximum temperature and

pressure drop

* Achieving a uniform temperature distribution (lower dT) will
require more detailed optimization of coolant flow path -
such as variable pin spacing



Future Directions

« Compare Analysis with Experimental Results

* Apply Probabilistic techniques to evaluate the effect of
variations in
— flow rate,
— heat generation rates,
— inlet coolant temperature, etc.

 Investigate other geometric alternatives
— Pin Geometry

_ Variable.oi .

— Flow path

 Investigate other cooling techniques

— Heat pipes
— Carbon Foam
— Di-electric Cooling
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